Evidence for a role of adaptive immune response in the disease pathogenesis of the MPTP mouse model of Parkinson's disease
نویسندگان
چکیده
Parkinson's disease (PD) is the second most common neurodegenerative disease and results from the loss of dopaminergic neurons of the nigrostriatal pathway. The pathogenesis of PD is poorly understood, but inflammatory processes have been implicated. Indeed increases in the number of major histocompatibility complex II (MHC II) reactive cells have long been recognised in the brains of PD patients at post-mortem. However whether cells expressing MHC II play an active role in PD pathogenesis has not been delineated. This was addressed utilising a transgenic mouse null for MHC II and the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In wild-type mice MHC II levels in the ventral midbrain were upregulated 1-2 days after MPTP treatment and MHC II was localized in both astrocytes and microglia. MHC II null mice showed significant reductions in MPTP-induced dopaminergic neuron loss and a significantly reduced invasion of astrocytes and microglia in MHC II null mice receiving MPTP compared with controls. In addition, MHC II null mice failed to show increases in interferon-γ or tumour necrosis factor-α in the brain after MPTP treatment, as was found in wild-type mice. However, interleukin-1β was significantly increased in both wild-type and MHC II null mice. These data indicate that in addition to microglial cell/myeloid cell activation MHC Class II-mediated T cell activation is required for the full expression of pathology in this model of PD.
منابع مشابه
The effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملGalantamine Effect on Tularemia Pathogenesis in a BALB/c Mouse Model
Background: Galantamine is a drug used for the treatment of Alzheimer’s disease and some other cognitive disorders. It is an inhibitor of acetylcholinesterase however, interaction with nicotinic acetylcholine receptors has also been reported. Owing to the significant role of cholinergic anti-inflammatory pathways in neuro-immunomodulation, we decided to examine the effect of galantamine on tula...
متن کاملNeuroprotective effect of topiramate against 6-hydroxydopamine-induced cell death in Parkinson's disease cell mode
Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive neuronal dysfunction. Growing evidence has shown that oxidative stress plays a crucial role in the pathogenesis of Parkinson's disease. Correspondingly, the current study evaluated the protective effect of topiramate in 6-hydroxydopamine induced oxidative stress and apoptosis in PC12 cells...
متن کاملThe Protective Effect of Vitamin E on Locus Coeruleus in Early Model of Parkinson\'s Disease in Rat: Immunoreactivity Evidence
Background: Free radical formation and oxidative stress might play an important role in the pathogenesis of Parkinson's disease (PD). In vitro data indicate that neuromelanin (NM) pigment is formed the excess cytosolic catecholamine that is not accumulated into synaptic vesicles via the vesicular monoamine transporter 2 (VMAT2). We designed this study to investigate the neuroprotective effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 64 شماره
صفحات -
تاریخ انتشار 2016